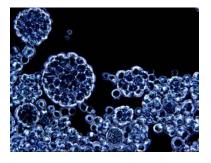

# PRODUCTION OF DHA BY HETEROTROPHIC MICROORGANISMS

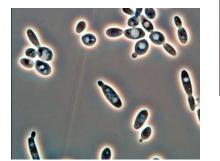


#### Inga Marie Aasen SINTEF Materials and Chemistry




## Heterotrophic $\omega$ 3-PUFA producing organisms

#### Organisms


- Lipid accumulating:
  - Microalgae
  - Thraustochytrids
  - Fungi and yeast
  - Bacteria
- Lipid accumulating <u>and</u> EPA/DHA producers:
  - Marine microalgae and thraustochytrids
  - Genetically engineered yeast

#### Carbon sources

Typically glucose or sucrose









## **Physiology of lipid and EPA/DHA-production**

#### Location of EPA/DHA in significant amounts:

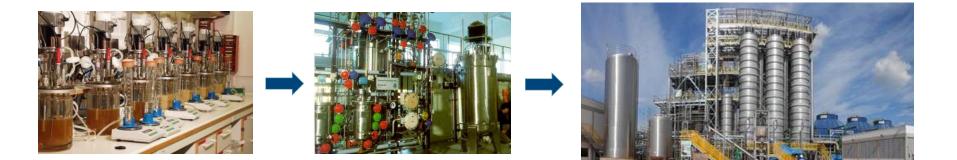
- Membranes (phospho- and glycolipids):
  - Many marine, heterotrophic species, but membrane lipids <10 % of dw</p>
  - Photosynthetic algae (chloroplast membranes)
- Storage lipids (triacylglycerols):
  - Only Crypthecodinium cohnii and species of thraustochytrids
  - Accumulation is induced by nutrient limitation and energy in excess

| Location of EPA / DHA<br>(high levels, e.g. >20 % of TFA) | Organisms                | Lipid content<br>[% of dw] |
|-----------------------------------------------------------|--------------------------|----------------------------|
| Membrane lipids (glyco- and phospholipids)                | Marine bacteria          | <10                        |
|                                                           | Thraustochytrids         | <10                        |
|                                                           | Heterotrophic microalgae | ?                          |
|                                                           | Phototrophic microalgae  | 15 - ?                     |
| Storago lipido (trigovlatvogral)                          | Thraustochytrids         | > 50 (40-70)               |
| Storage lipids (triacylglycerol)                          | Heterotrophic microalgae | >50                        |



### **Productivities**

|                            | Cell density | DHA       |       |         | Deference             |
|----------------------------|--------------|-----------|-------|---------|-----------------------|
| Heterotrophic organisms    | [g dw/l]     | [% of dw] | [g/l] | [g/l·d] | Reference             |
| C. cohnii                  | 109          | 17        | 19    | 1.2     | De Swaaf et al., 2003 |
| thraustochytrid strain 12B | 21           | 27        | 5.6   | 2.8     | Perveen et al., 2006  |
| S. limacinum SR21          | 59           | 26        | 15.5  | 3.0     | Yaguchi et al., 1997  |
| S. limacinum SR21          | 62           | 32        | 20    | 2.9     | Huang et al., 2012    |
| Aurantiochytrium sp.       | 90-100       | 15        | 14    | 2.2     | Jakobsen et al., 2008 |
| Schizochytrium sp.         | 160-180      | 25        | 40-45 | 10-12   | US 7732170            |


| Phototropic algae | 1-4 | 3-5 | 0.05-0.2 | ≤ 0.06 |
|-------------------|-----|-----|----------|--------|
|-------------------|-----|-----|----------|--------|



## **Production technology**

#### Fermentation

- Well-established large scale technology, with an annual production of:
  - 2.5-3 mill. tonnes amino acids (lysine and glutamate)
  - 1.5-2 mill. tonnes citric acid
  - Production plants comprising >10 reactors of 300-500 m<sup>3</sup>





## **Required capacities for feed applications**

25 000 tonne EPA/DHA (100 000 tonnes "fish oil equivalents")

| Productivity<br>[g/l·d] | Reactor<br>volume [m <sup>3</sup> ] | Plant size                              | Technology<br>status  | Ground area |
|-------------------------|-------------------------------------|-----------------------------------------|-----------------------|-------------|
| 10                      | 6 850                               | 15-20 reactors á 350-450 m <sup>3</sup> | Existing              | ~1000 m²    |
|                         |                                     | Pond: 6300 ha*                          |                       |             |
| 0.06 1 141 550          | Tubular: 2550 ha*                   | Need to be<br>developed                 | 20-60 km <sup>2</sup> |             |
|                         |                                     | Flat panel: 1980 ha*                    | actoroped             |             |

\*: Ground area; ratios (m<sup>3</sup>/ha) from Norsker et al. (2011)



### Costs

- Calculations based on cost analyses and information on large scale fermentation processes for amino acids
- A "value production" of 125-250 €/m<sup>3</sup>,day is required for an economical feasible process (15 % internal rate of return)

Required selling price for DHA as a function of productivity for 150 €/m<sup>3</sup>,d "value production"

| _                       | Selling price [€/kg] |       |       |       |  |
|-------------------------|----------------------|-------|-------|-------|--|
| Productivity<br>[g/I·d] | DHA                  | Oil   |       |       |  |
| [9, ]                   |                      | 40 %* | 25 %* | 10 %* |  |
| 5                       | 30                   | 12.00 | 7.50  | 3.00  |  |
| 10                      | 15                   | 6.00  | 3.75  | 1.50  |  |
| 15                      | 10                   | 4.00  | 2.50  | 1.00  |  |
| 25                      | 6                    | 2.40  | 1.50  | 0.60  |  |

\*: % DHA of TFA

Fish oil: ~ 1 €/kg, corresponding to 4 €/kg EPA/DHA (or 10 €/kg DHA)
Phototrophic: 3 €/kg dw (Norsker et al., 2011).
If 5 % EPA-> Production costs 60 €/kg, selling price (+50 %) 90 €/kg



## **Optimization and cost reduction**

#### **Potential improvements**

- Increased product concentration
  - Cell density
  - Lipid content
  - DHA content of TFA
- Increased growth and production rates

|                                     | Cell density<br>[g/l] | TFA<br>[% of dw] | DHA<br>[% of TFA] | Ferm time<br>[h] | DHA productivity<br>[g/l·d] |
|-------------------------------------|-----------------------|------------------|-------------------|------------------|-----------------------------|
| Current reported                    | 160-180               | 60-65            | 40-45             | 80-90            | 10-12                       |
| Maximum reported for each parameter | 180                   | 65               | 67                | 80               | 24                          |
| Assumed max for each parameter      | 200                   | 70               | 70                | 70               | 34                          |



## **Sustainability**

#### Carbon sources

- A production of 100 000 t "fish oil equivalents" (25 000 t EPA/DHA) will represent ~2 % of the current global fermentation production based on glucose (starch) and sucrose.
- Wastes, such as glycerol, can be utilized
- Lignocellulose and seaweed biorefineries can represent a future carbon source

#### Other issues that have to be considered

- Energy
- Water
- Other nutrients
- etc.



## Conclusions

### Heterotrophic production

- Technology well established
- Costs
  - Maximum reported productivities correspond to selling prices of 15 €/kg DHA (several reports -> ~30 €/kg)
  - Process optimization (reduce time, increase lipid and DHA-fraction) => <10 €/kg DHA</p>

In a foreseeable future: Probably the only realistic technology for production of the <u>required</u> <u>amounts</u> to supply the aquaculture industry



#### But:

- A systematic comparison of the technologies <u>on the same</u> <u>basis</u> (e.g. production volumes) should be carried out:
  - Costs
    - Need for genetic engineering to improve productivity; realistic achievements with and without
    - For phototropic production:
      - Technology development (increased photosynthetic efficiency)
      - Location
      - Etc.
  - Sustainability (carbon sources, other nutrients, energy, water, location etc.)
  - Product properties (e.g. polar lipids vs triacylglycerol), other valuable compounds (e.g. pigments) etc.

... and, phototropic production may be more competitive for smaller volumes (and other products)!?

